Curriculum
- 6 Sections
- 20 Lessons
- Lifetime
Expand all sectionsCollapse all sections
- 1. Introduction to Scalable and Probabilistic Algorithms3
- 2. Consistent Hashing: Partitioning and Rebalancing at Scale6
- 2.1IOIF 2.1 The Rebalancing Problem in Distributed Caches
- 2.2IOIF 2.2 How Consistent Hashing Works: Intuition and Visualization
- 2.3IOIF 2.3 Implementing a Simple Consistent Hashing Ring
- 2.4IOIF 2.4 Real-World Uses: Databases (DynamoDB, Cassandra) and Load Balancers
- 2.5IOIF 2.5 Recap: Consistent Hashing vs. Modulo Partitioning
- 2.6IOIF 2. Quiz3 Questions
- 3. Bloom Filters: Fast Membership Testing with Probabilities6
- 3.1IOIF 3.1 The Set Membership Problem and Its Costs
- 3.2IOIF 3.2 Bloom Filter Intuition: Bit Arrays and Hash Functions
- 3.3IOIF 3.3 Implementing a Simple Bloom Filter in Python
- 3.4IOIF 3.4 Real-World Scenarios: Search, Networking, Databases
- 3.5IOIF 3.5 Recap: Bloom Filters vs. Hash Sets
- 3.6IOIF 3. Quiz3 Questions
- 4. HyperLogLog: Estimating Cardinality at Web Scale6
- 4.1IOIF 4.1 The Challenge of Counting Uniques in Big Data
- 4.2IOIF 4.2 Intuitive Explanation: Probabilities and Bit Patterns
- 4.3IOIF 4.3 Implementing a Simple HyperLogLog in Python
- 4.4IOIF 4.4 Real-World Uses: Analytics, Redis, BigQuery
- 4.5IOIF 4.5 Recap: HyperLogLog vs. Exact Counting
- 4.6IOIF 4. Quiz3 Questions
- 5. Beyond: Other Probabilistic Data Structures and Further Study4
- IOIF FinalQuiz Итоговый квиз по курсу1
IOIF 5. Quiz
Prev